On Lorentz manifolds with abundant isometries

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the In nitesimal Isometries of Manifolds with Killing Spinors

We study the Lie algebra of innnitesimal isometries of 7{dimensional simply connected manifolds with Killing spinors. We obtain some splitting theorems for the action of this algebra on the space of Killing spinors, and as a corollary we prove that there are no innnites-imal isometry of constant length on a 7{dimensional 3{Sasakian manifold (not isometric to a space form) except the linear comb...

متن کامل

On the infinitesimal isometries of manifolds with Killing spinors

We study the Lie algebra of infinitesimal isometries of 7–dimensional simply connected manifolds with Killing spinors. We obtain some splitting theorems for the action of this algebra on the space of Killing spinors, and as a corollary we prove that there are no infinitesimal isometry of constant length on a 7–dimensional 3– Sasakian manifold (not isometric to a space form) except the linear co...

متن کامل

Homogeneous Lorentz Manifolds with Simple Isometry Group

Let H be a closed, noncompact subgroup of a simple Lie group G, such that G/H admits an invariant Lorentz metric. We show that if G = SO(2, n), with n ≥ 3, then the identity component H of H is conjugate to SO(1, n). Also, if G = SO(1, n), with n ≥ 3, then H is conjugate to SO(1, n− 1).

متن کامل

Compact Lorentz manifolds with local symmetry

We prove a structure theorem for compact aspherical Lorentz manifolds with abundant local symmetry. If M is a compact, aspherical, real-analytic, complete Lorentz manifold such that the isometry group of the universal cover has semisimple identity component, then the local isometry orbits in M are roughly fibers of a fiber bundle. A corollary is that if M has an open, dense, locally homogeneous...

متن کامل

Smoothness of Isometries between Subriemannian Manifolds

Abstract In a joint work with Enrico Le Donne (Jyvaskyla, Finland) we show that the group of isometries (i.e., distance-preserving homeomorphisms) of an equiregular subRiemannian manifold is a finitedimensional Lie group of smooth transformations. The proof is based on a new PDE argument, in the spirit of harmonic coordinates, establishing that in an arbitrary subRiemannian manifold there exist...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Tsukuba Journal of Mathematics

سال: 1989

ISSN: 0387-4982

DOI: 10.21099/tkbjm/1496161011